
Arkema-Piezotech
Mickaël Pruvost
Marketing & Development Manager

Printed piezoelectric materials: review of applications from sensing to actuation to energy harvesting.
Piezoelectric polymers are the most promising electroactive materials with outstanding properties that can be integrated into a variety of flexible electronic devices. Their multifunctional capabilities, bending ability, ease of processing and chemical stability make them attractive for applications in sensors, actuators and energy harvesting. At Arkema, we synthesize piezoelectric fluoropolymers under the name Piezotech that offer endless possibilities to revolutionize our daily lives and make real advances in the electronics, medical, automotive and smart surfaces industries.
The presentation will provide an overview of Piezotech products and their capabilities with a focus on main applications.

Asahi Kasei
Abe Masayuki
Manager

Introduction of R2R printing technology for submicron resolution electrodes and applied devices
For high performance and practical use of printed electronics devices, it is important to have a printing technology that can industrially form electrodes with submicron resolution. We have developed our own electron beam lithography technology as a patterning technology for cylindrical plates in order to achieve both mass productivity and high resolution. We have also developed our own metal nano-ink with an average agglomerate diameter of less than several tens of nanometers, as well as our own R2R printing process and equipment. I will introduce these technologies and the hybrid type transparent RFID tag produced by applying these technologies.

BeLink Solutions
Pierre Ball

Industrialization of Printed Electronics technology moving from POC to high volumes.
Printed Electronics technology requires robust industrialization processes to ensure high volume production success.
BeLink Solutions with legacy experience in conventional electronics as well as screen printing for the automotive market has combined both expertises to develop high volumes processes in Printed Electronics.
Our objective is to support Printed Electronics market growth for Automotive, Industrial, Smart Home & Building customers by providing robust and reliable manufacturing processes.

Celoplás
Ana Cortez
RDI Manager

LEIMSA – Lightweight Electronics by Injection Moulding in Seamless Architectures
The LEIMSA project aims to develop disruptive components for the interior of the car, floor center console and dashboard, allowing the integration of truly innovative and sustainable user centered functionalities.
For this purpose, decorative elements and distinctive functionalities will be integrated into the products with as few operations as possible, through the use of emerging and lightweight technologies in the mold (in-mould operations), such as In-Mould Decoration (IMD), or In- Mold Labeling (IML), High Pressure Forming (HPF) and In-Mould Electronics (IME).
Modern IM (In-Mould) technologies allow the combination of several stages of traditional production processes in the mold to obtain additional functionalities for the parts or components, but also for aesthetics improvements. As a result, an upgrade of functionalities is achieved, as well as a better aesthetic appearance and a greater durability of the generated products.
The development of intelligent and haptic surfaces with an attractive seamless 3D design and an immersive and intuitive HMI (human-machine) interface centered on the user experience are the main goals of LEIMSA. For this purpose, the needs of the users were identified, in order to guide the development of product, design and style to the market. The development of production tools and integration for a pre-industrial level of technological maturity is also contemplated.
The LEIMSA project is carried out by a consortium of six highly renowned entities in the national and international automotive industry: Simoldes Plásticos, S.A (leader promoter of the project), Bosch Car Multimedia, Celoplás, Plásticos para a Indústria S.A., DTx, CEiiA and the University from Minho. With a global investment of 4,898,005.06 €, this project is co-financed by the Portugal 2020 Programme, under the Operational Program for Competitiveness and Internationalization (COMPETE 2020) with the amount of 3,036,914.62 €, from the European Fund for Regional development.

Clayens
Didier Muller
Responsable R&D

Plastronics – a short introduction
Plastronics is a new branch of the electronics industry, setting the electronic circuitry directly at the surface of plastic parts, or inside its structure.
The different processes of the plastronics (LDS, 2K molding, IME, …) gives possibilities to designers and engineers, depending upon the kind of application: antenna, HMI, lighting, sensors etc.
For customers and users, it permits new experience: surfaces, shapes, and aspects.
After highlighting some key manufacturing processes and their possibilities and limits, this presentation will show potential or existing applications. As a conclusion, we will raise some key challenges and hard points the plastronics is facing, such standardization, recycling, …