top of page

Graphene & 2D Materials: End Users, Applications, Major Producers & Start Ups

APR 2021
5 Minute preview of all the event presentations

TechBlick members can watch all these presentations in full. Register to get access.

Ricardo Oliveira

2DM

Ricardo Oliveira

CTO and Co-Founder

2DM
Mass production of True 2D Graphene

There are many companies worldwide claiming to produce “graphene materials” but showing huge disparity in their properties. Because of that, many industrial applications were hindered by quality and price of graphene. In this space, 2D Materials Pte. Ltd. (2DM) manufactures high-performance graphene at industrial scale as an industrial additive to enhance many industrial products, such as batteries, coatings, and composites. Our vision is to expand the frontier of materials application using high-performance graphene. Some examples of customer’s trials will be presented, and the performance-price and price-volume correlations will be discussed focusing on the value added to customers’ products.

Anna (Ami) Andersson

ABB

Anna (Ami) Andersson

Principal Scientist

ABB
Solving tribological problems in the electrical grid with graphene

Beenish Siddique

AEH Innovative Hydrogel Limited

Beenish Siddique

AEH Innovative Hydrogel Limited
Yield Improvement through Novel Hydrogel membranes and sensor technology in Vertical Farming

Smart hydrogels containing graphene-based sensors for precision control of vertical farms to improve the crop yield and decarbonize indoor farming.

Julio Gomez

Avanzare

Julio Gomez

CEO

Avanzare
Multifunctional Composites Using Graphene Materials

The application bulk graphene materials in composites is predicted to be the largest market for graphene. Several products based on composites, mainly in sport good sector, claims that are based on graphene materials (GRMs).
GRMs are a family of materials with remarkable differences in morphology, aspect ratio, surface chemistry. An adequate selection of the GRM and processing technique is a key factor for achieves the desired properties.
In the presentation we will describe the influence of the GRM and processing technologies for the preparation of multifuctional composites with electrical and/or thermal conductivity, mechanical performance, fire retardancy, barrier properties and the potential market and actual large volume application in the polymer composites sector.

Julio Gomez
CEO @ Avanzare

Bio

He received his B.S. degree in Chemistry from Universidad Complutense de Madrid (1995) receiving the best B.S. degree in Chemistry in 1995 award in the University Complutense de Madrid. Ph.D. in Chemistry (2000) from University of La Rioja, best PhD degree in Science and Technology award in the University of La Rioja from the years 1999-2000
Postdoctoral researcher position in the Laboratoire de Synthèse Organique, University of Nantes-CNRS.After finishing his Ph.D, he spent 3 years as assistant Professor in Universidad de La Rioja and 2 years as an Area Manager in the research centre CIDETEC studying electrochemical systems.
He was the founder of AVANZARE at the end of 2004. He is actually the President of the Board of Directors of Avanzare.
He is the president of the Spanish Graphene Alliance.
He has received the National Award Entrepreneur of the year 2008 in Spain by the ministry of industry.
He has also received the best product award NANOAWARDS 2008 (USA). F&S best practices award in innovation 2013 (UK) for graphene composites. Finalist of the National Awards in Excellence 2013 and finalist of Innovation in SME awards 2018.
Member of the Executive board of the Chamber of Commerce from La Rioja from 2010. He is member of the Social Council of La Rioja University elected by the Regional Parliament from 2012.
Inventor in 12 patents all of them under exploitation or licenced. Author of 62 papers and 7 books (H factor 28).

Nikolaus Nestle

BASF

Nikolaus Nestle

Principal Scientist

BASF
Black Flakes with Green Value Proposition – Graphene Polymer Composites for Sustainability

Since the discovery of graphene and its impressive mechanic, thermal and electrical properties, major materials research efforts have been made towards harnessing these properties for the development of polymer composites with unprecedented performance. While this research has shown that some of the bolder expectations for their properties will probably not be achievable for reasons from basic physics, substantial progress has been made in the production of composites with more down-to-earth property improvements.
At the same time, the production of graphene related materials (GRM) has made great progress with respect to available quantities, cost and resource efficiency that pragmatic applications of graphene as just another functional filler for polymer composites has become economically and ecologically viable.

While such properties are not necessarily “flashy”, they nevertheless may greatly help the polymer industry on the way of to a more circular and resource-efficient economy.

Anna Carlsson

Bright Day Graphene

Anna Carlsson

CTO, Co-Founder

Bright Day Graphene
Highly Conductive Green Graphene – Scaling Up Production of Graphene from Biomass

Anna Carlsson the CTO of Bright Day Graphene will talk about their unique process for producing graphene from a residual product from the pulp and paper industry. She will also talk about Bright Day Graphene´s plans for full scale production.

Albert Schnieders

CNM Technologies

Albert Schnieders

CEO

CNM Technologies
Carbon Nanomembranes for Water Filteration

Carbon Nanomembranes (CNMs) are a molecular thin, carbon-based 2D-sheet material complementary to graphene. Their properties (dielectric, easy chemical functionalisation, intrinsic porosity, …) are rather comparable to ultrathin polymeric films. A variety of production methods - from large area CNM-composite membranes to CMOS-compatible integration into devices - is feasible. Since CNMs are highly permeable for water, while blocking anything else, they can enable a hitherto non-attainable separation efficiency compared to existing membrane technology. CNM-composite membranes can be used in forward osmosis for cold concentration of watery solutions in the food&beverage or the fragrances&aroma industry. As reverse osmosis membranes they can filter last amounts of salt, heavy metals or small organic molecules for the provision of ultrapure water in the semiconductor or pharma industry. Other applications of CNMs are in sensor technology, energy and semiconductor manufacturing.

Albert Schnieders
CEO @ CNM Technologies
Bio

Dr. Albert Schnieders is co-founder and managing director of CNM Technologies, a high-tech company, which produces molecular thin, functionalized carbon nanomembranes (CNMs) and develops together with its customers innovative applications of CNMs in a diverse field of industries. Focus technologies are water filtration.as well as semiconductor production and sensor technology. Albert earned his degree in physics at the University of Münster, Germany. After working as a postdoctoral researcher at the Universities of Utah and Delaware, he worked for the US subsidiaries of two German high-tech companies: Tascon, a contract laboratory specializing in chemical surface analysis, and the scientific instrument manufacturer ION-TOF. Albert left both companies and the USA end of 2011 to start CNM Technologies

Angelos Kyrlidis

Cabot Corporation

Angelos Kyrlidis

R&D Director

Cabot Corporation
Enabling Innovative Applications With High Performance Conductive Carbon Additives

Cabot is a leading supplier of conductive carbon additives and has recently expanded its portfolio to include carbon nanostructures (CNS), a unique network of crosslinked carbon nanotubes. CNS can deliver conductivity at very low loadings in composite systems. This enables the development of innovative solutions in many applications ranging from EMI shielding plastics and silicones to conductive high end elastomers, as well as next generation formulations for batteries.

Brett Goldsmith

Cardea Bio Inc

Brett Goldsmith

CTO

Cardea Bio Inc
Linking Up To Life - Integrating Biology Into Modern Electronics

On the industry’s path to a new generation of display performance and manufacturability, it encountered a roadblock: thin film transistor performance and manufacturability. As in the VLSI semiconductor industry before it, the display industry chose to focus on improving semiconductor material performance to break through the roadblock - moving from silicon to higher performance semiconductor materials. The plan was simple: better semiconductor + same transistor structure and materials = better TFTs. After 20 years of research and development, the semiconductor path around the roadblock has failed; it has provided about one-third of the required advances in performance, device size and manufacturability.

Brunetto Martorana